DISCUSSION

are shown in Fig 2 The western margin of Kaliveli lagoon is bordered by alluvial plains which are slightly elevated region that has not facilitated for the development of mud flat Teri sands are found to occur overlying the white sands and a discussion on the origin of the Teri sands is beyond the purview of the paper

9 In Fig 3, only representative frequency curves have

been given

- 10 Processes that are acting in, and around the study area are complex as a combination of marine, lagoonal, Aeolian and terrestrial activities take place Hence interpretation of statistical parameters will naturally vary from individuals
- 11 Back barrier regions experience usually low energy conditions

THE 2005 ERUPTION OF BARREN VOLCANO: AN EXPLOSIVE INNER ARC

VOLCANISM IN ANDAMAN SEA by Tapan Pal, P.C. Bandopadhyay, S.K. Mitra and S Raghav. Jour. Geol. Soc. India, 2007, v 69, pp.1195-1202.

S. Viswanathan, IIT- Campus, Powai, Mumbai, comments

I wish to refer to the Tables 2 and 3 appearing on page 1200 and in Table 1 seven analyses of Type 1 and three of Type 2 basalts are presented In Table 3 the average compositions of Types 1 and 2 are shown The average values given are exactly the same as those of samples R0 and R1 of Type 1 Basalt Will the authors explain the discrepancy? There was some inadvertent mistake in Table 3 and Dr Viswanathan has rightly pointed out that I am very sorry for this mistake which has come out in publication form While pasting average values of type 1 and type 2 lava, values of R1 and R2 samples were pasted in Table 3 I am sending here the average values corresponding Type 1 and Type 2 lava along with the values of individual samples as attachment The plotting was done on the basis of individual samples and the interpretation was done on the plotting itself and the average values differ mostly on decimal positions

Tapan Pal, Geological Survey of India, Kolkata, replies

Table												
Sample No	R0	R1	R2	R3	R4	R5	R6	Average of Type 1 2005 lava	B1	B2	B3	Average of Type 2 2005lava
SiO,	50 41	50 31	50 42	50 35	50 79	51 01	50 34	50 52	50 61	50 77	50 18	50 52
Al ₂ O ₃	22 02	21 81	22 03	22 23	21 84	21 23	22 03	21 88	21 88	22 15	21 59	21 87
Fe ₂ O ₃	4 95	5 44	618	4 61	4 09	4 02	6 22	5 073	5 1 2	3 81	4 97	4 63
FeO	2 52	2 61	189	3 33	3 78	3 69	181	2 80	2 71	3 96	2 97	3 213
MnO	013	0 14	013	013	0 13	0 13	0 13	0 13	013	0 13	013	0 13
MgO	3 99	4 24	4 16	4 11	4 03	4 21	4 05	4 11	4 06	3 95	4 21	4 073
CaO	11 61	11 41	11 23	11 21	11 11	11 01	11 23	11 25	11 23	11 22	11 42	11 29
Na ₂ O	2 73	2 89	2 78	2 88	2 97	2 77	2 99	2 86	2 93	3 01	3 05	2 99
K ₂ O	0 33	0 37	0 29	0 27	0 35	0 35	0 36	0 33	0 36	0 36	0 31	0 34
TiO,	0 77	0 83	0 82	0 83	0 84	0 82	0 84	0 82	0 83	0 83	0 84	0 83
P,O ₅	0 08	0 09	0 08	0 09	0 09	0 11	0 09	0 09	0 09	0 09	0 09	0 09
LOI	0 35	0 06	0 48	0 27	0 11	0 15	0 38	0 26	0 28	0 06	018	0 17
Total	99.89	100.2	100.49	100.31	100 13	99.5	100.48	100.14	100 23	100 35	99.94	100.17