Spatial Potential Analysis of Earthquakes in the Western Himalayas Using b-Value and Thrust Association

Authors

  • National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad - 500 037
  • National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad - 500 037
  • National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad - 500 037
  • National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad - 500 037
  • Department of Geophysics, College of Science & Technology, Andhra University, Visakhapatnam – 530 003

DOI:

https://doi.org/10.1007/s12594-018-0921-y

Abstract

In this study, we have analysed the spatial variation of b-values (from frequency-magnitude distribution (FMD)) in the western Himalayas as an indicator to demarcate the potential zones of earthquake occurrences. This is done under the acceptance of interpretation that decrease of b-values is correlated with a stress increase in the epicentral region of an approaching earthquake event. In addition to this, the spatial association of the earthquake epicenters with the major thrusts in the region using weights of evidence method, to identify potential zones of earthquake occurrences have also been analysed. Both analyses were carried out using a historical earthquake (Mw> 4) database of the1900- 2015 period. Finally, based on the spatial variation of b-values and 'contrasts' derived from weights of evidence method (thrust associations), the derived map information was geospatially combined to prepare a "spatial earthquake potential" map of the western Himalayas. This map demarcates the western Himalayas into 3 zones - high, medium and low potential for future earthquake occurrences.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2018-06-01

How to Cite

Pudi, R., Roy, P., Martha, T. R., Vinod Kumar, K., & Rama Rao, P. (2018). Spatial Potential Analysis of Earthquakes in the Western Himalayas Using b-Value and Thrust Association. Journal of Geological Society of India, 91(6), 664–670. https://doi.org/10.1007/s12594-018-0921-y

References

Aki, K. (1965) Maximum Likelihood Estimate of b-value in the formula log N = a - bM and its Confidence Limits. Bull. Earthquake Res. Inst., v.43, pp.237-239.

Argand (1924) La tectonique de l'Asie. Compte rendu du congrès géologique international (1922) Vaillant-Carmane press, Liege, Belgium, 104p.

Avouac, J.P., Bollinger. L., Lavé, J., Cattin, R., Flouzat, M. (2001) Le cycle sismique en Himalaya. C R Acad Sci., v.333, pp.513–529.

Bender, B. (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull. Seismol. Soc. Amer., v.73, pp.831–851.

Bilham, R. (2004) Earthquakes in India and the Himalaya: tectonics, geodesy and history. Anna of Geophys., v.47, pp.2/3.

BIS. (2002) "IS 1893-2002 (Part 1): Indian standard criteria for earthquake resistance design of structures, Part 1-general provisions and buildings”. Bureau of Indian Standards, New Delhi.

Bollinger, L., Avouac, J.P., Cattin, R., Pandey, M.R. 2004. Stress building in the Himalaya. Jour. Geophys. Res., v.109 BIP 405, pp.1–8.

Bondar, I.K., Myers, S.C., Engdahl, E.R., Bergma,n E.A. (2004) Epicentre accuracy based on seismic network criteria. Geophys. Jour. Internat., v.156, pp.483–496. doi:10.1111/j.1365-246X.2004.02070.x

Chan, C.H., Wu, Y.M., Tseng, T.L., Lin, T.L., Chen, C.C. (2012) Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics, v.532, pp.215-222.

Chingtham, P., Chopra, S., Baskoutas, I., Bansal, B.K. (2014) An assessment of seismicity parameters in Northwest Himalaya and Adjoining regions. Natural Hazards, v.71, pp.1599–1616.

Daneshfar, B. and Benn, K. (2002) Spatial relationships between natural seismicity and faults, Southeastern Ontario and north-central New York State. Tectonophysics, v.353, pp.31–44.

Dasgupta, S., Mukhopadhyay, B., Bhattacharya, A. (2007) Seismicity pattern in north Sumatra–Great Nicobar region: in search of precursor for the 26 December 2004 earthquake. Jour. Earth Sys. Sci., v.116, pp.215–223.

Gansser, A. (1964) Geology of the Himalayas. Intersci., 289p.

Gardner, J.K. and Knopoff, L. (1974) Is the sequence of earthquakes in Southern California, with Aftershocks removed, Poissonian? Bull. Seismol. Soc. Amer., v.64(5), pp.1363{1367. 3, 4, 5, 7, 8, 9, 10,11, 18.}.

Gibowicz, S. (1973) Variation of the frequency–magnitude relation during earthquake sequences in New Zealand. Bull. Seismol. Soc. Amer., v.63(2), pp.517.

Goodacre, A.K., Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F. (1993) Statistical analysis of the spatial association of seismicity with drainage and magnetic anomalies in western Quebec. Tectonophysics, v.217, pp.285– 305.

Gorgun, E. (2013) Analysis of the b-values before and after the 23 October 2011 Mw 7.2 Van–Erciº, Turkey earthquake. Tectonophysics. v.603, pp.213–221.

Gutenberg, R. and Richter, C.F. (1944) Frequency of earthquake in California. Bull. Seismol. Soc. Amer. v.34, pp.7507-7514.

Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. GSA Bull., v.112, pp.324–350.

Imoto, M. and Ishiguro, M. (1986) A Bayesian approach to the detection of changes in the magnitude–frequency of earthquakes. Jour. Phys. Earth, v.34, pp.441–445.

Imoto, M. (1991) Changes in the magnitude–frequency b-value prior to large (M 6.0) earthquakes in Japan. Tectonophysics, v.193(4), pp.311–325.

Ishimoto, M. and Iida, K.(1939) Observations of earthquakes registered with the micro seismograph constructed recently. Bull. Earthquake Res. Inst., v.17, pp.443–478.

Kanamori, H. (1977) The energy release in Great Earthquakes. Jour. Geophys. Res., v.82, pp.2981–2987.

Kayal, J.R. (2014) Seismotectonics of the great and large earthquakes in Himalaya. Curr Sci. v.106(2), 25 January 2014.

Kolathayar, S., Vipin, K.S., Sitharam, T.G. (2012) Recent Seismicity in India and adjoining Regions. Internat. Jour. Earth Sci. Engg., v.5, pp.51-59.

Main, I, Meredith, P, Jones, C. (1989) A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics. Geophys. Jour. Internat., v.96(1), pp.131–138.

Mignan, A. and Woessner, J. (2012) Estimating the Magnitude of Completeness for earthquake catalogs. Community online Resource for Statistical Seismicity Analysis, doi:10.507/CORSSA-00180805. Available at http:/ /www.corssa.org

Mogi, K. (1967) Earthquakes and Fractures. Tectonophysics, v.5, pp.35–55.

Monterroso, D. (2003) Statistical Seismology Studies in Central America: bValue, Seismic Hazard and Seismic Quiescence. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 897. Acta Universitatis Upsaliensis, Uppsala, Sweden, 27p.

Mugnier JL, Gajurel A, Huyghe P, Jayangondaperumal R, Jouanne F, Upreti B. 2013a. Structural interpretation of the great earthquakes of the last millennium in the central Himalaya. Earth Sci. Rev., v.127, pp.30–47.

Mukhopadhyay B., Acharyya, A., Dasgupta, S. (2011) Potential source zones for Himalayan earthquakes: constraints from spatial–temporal clusters. Natural Hazards, v.57, pp.369.

Nakata, T. (1989) Active faults of the Himalaya of India and Nepal. Spec. Paper Geol. Soc. Amer., v.232, pp.243-264.

Nuannin, P., Kulhánek, O., Persson, L., Tillman, K. (2002) Forecasting of increased seismicity in the Zingruvan mine, Sweden, by using temporal variations of b-values. Acta Montana Series A., v.21, pp.13–23.

Rajendran, C.P. and Kusala Rajendran (2005) The status of central seismic gap: a perspective based on the spatial and temporal aspects of large Himalayan earthquakes. Tectonophysics, v.395, pp.19-39.

SEISAT (2000) Seismotectonic Atlas of India, Geological Survey of India, New Delhi.

Singh, C. (2016) Spatial variation of seismic b-values across the NW Himalaya. Geomat. Nat. Haza. Risk, v.7(2), pp.522-530. DOI:10.1080/ 19475705.2014.9419512

Scholz, C.H. (1968) The frequency–magnitude relation of micro fracturing in rock and its relation to Earthquakes. Bull. Seismol. Soc. Amer., v.58, pp.399–415.

Talukdar, P. (2013) Seismic Study and Spatial Variation of b-value in Northeast India. IOSR Jour. Appld. Phys., v.4, pp.31-40.

Thakur, V.C., Joshi, M., Sahoo, D., Suresh, N., Jayangondapermal, R., Singh, A. (2014) Partitioning of convergence in Northwest Sub Himalaya: estimation of late Quaternary uplift and convergence rates across the Kangra reentrant, North India. Internat. Jour. Earth Sci., v.103, pp.1037– 1056. DOI:10.1007/s00531-014-1016-7.

Thakur, V.C. and Jayangondaperumal, R. (2015) Seismogenic active fault zone between 2005 Kashmir and 1905 Kangra earthquake meizoseismal regions and earthquake hazard in eastern Kashmir seismic gap. Curr. Sci., v.109, pp.610-613.

Udias, A. and Mezcua, J. (1997) Fundamentos de Geofisica. Alianza Universidad Textos Paper no. 476.

Uhrhammer, R. (1986) Characteristics of Northern and Central California Seismicity. Earthq. Not. v.57(1), p.21.

Utsu, T. (1965)A Method for Determining the Value of b in a formula Log N = a-bM Showing the Magnitude frequency for earthquakes, Geophys. Bull., v.13, pp.99–103.

Utsu, T. (1999) Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure and Appld. Geophys., v.155, pp.509–535.

Valdiya, K.S. (1980) Geology of the Kumaun Himalaya. Wadia Inst. Himalayan Geol., 289p.

Valdiya, K.S. (1992) The main boundary thrust zone of the Himalaya, India. Ann. Tectonophysics, v.6, pp.54–84.

Van Westen, CJ, Rengers, N, Soeters, R. (2003) Use of geomorphological information in Indirect landslide susceptibility assessment. Natural Hazards, v.30, pp.399–419.

Wiemer, S. and Wyss, M. (1997) Mapping the frequency–magnitude distribution in asperities: an improved technique to calculate recurrence times? Jour. Geophys. Res., v.102, pp.15115–15128.

Wiemer, S, McNutt, S, Wyss, M. (1998) Temporal and three-dimensional spatial analyses of the frequency–magnitude distribution near Long Valley Caldera, California. Geophys Jour. Internat. v.134(2), pp.409–421.

Wiemer, S. (2001) A software package to analyze seismicity: ZMAP. Seismo. Res. Lett., v.72(2), pp.374–383.

Wiemer, S. and Wyss, M. (2002) Spatial and temporal variability of the bvalue in seismogenic: an overview. Advan. Geophys., v.45, pp.259–302.

Wiemer, S. and Katsumata, K. (1999) Spatial variability of seismicity parameters in aftershock zones. Jour. Geophys. Res., v.104, pp.1313513151.

Woessner, J. and Wiemer, S. (2005) Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Amer., v.95. Doi:10.1785/012040007.

Wyss, M. (1973) Towards a physical understanding of the earthquake frequency Distribution. Geophys. Jour. Royal Astron. Soc., v.31, pp.341–359.

Wyss, M. and Lee, W.H. (1973) Time variations of the average earthquake magnitude in central California. In: Kovach, R., Nur, A. (Eds.), Proceedings of the Conference on Tectonic Problems of the San Andreas Fault System. Stanford University Geol. Sci., pp.24–42.

Yadav, R.B.S. (2009) Seismotectonic Modeling of NW Himalaya: A Perspective on Future Seismic Hazard. Unpublished Ph.D. Thesis. Department of Earthquake Engineering. IIT Roorkee. India. p.76.

Zhao, W., Nelson, K.D., project INDEPTH Team. (1993) Deep seismic reflection evidence for continental under thrusting beneath southern Tibet. Nature, v.366, pp.55–559.

Most read articles by the same author(s)

1 2 3 > >>