Spatial Vulnerability Investigation by Morphotectonic Analysis of the Mandakini River Basin near Kedarnath, Uttarakhand, India using SRTM DEM in a GIS Platform and GPS Data

Authors

  • Geological Survey of India, Hyderabad - 500 068
  • Department of Geology, School of Earth and Environmental Sciences, Amity University Punjab, Mohali - 140 306

DOI:

https://doi.org/10.17491/jgsi/2024/173913

Keywords:

No Keywords.

Abstract

Tectonomorphic study was carried out to evaluate the intensity of tectonic activity in and around the Mandakini River basin (1330 sq. km area) near Kedarnath. The area has witnessed several vulnerable landslides and devastating floods in the recent past. Quantitative parameters such as Bifurcation Ratio (BR), Asymmetry Factor (AF), Valley floor width Index (Vf), Hypsometric Integral (HI), Stream-length gradient Index (SL index), Sinuosity Index (Sp) and two qualitative parameters such as drainage orientation survey and the hypsometric curve is used to evaluate the spatial tectonomorphic susceptibility of the different watersheds of the Mandakini River basin. High BR, medium to high AF and low Vf show a very high vulnerability mostly close to MCT. High Sp and medium HI values are linked with continuous tectonic disturbances followed by erosion. High SL index demarcates high tectonic instability along different portions of streams which is prone to tectonic perturbation. The Index of Relative Active Tectonic also suggests variability in tectonic activities varies from very high tectonic activity to high tectonic activity. Regional geology and lower-order stream orientation survey of the study area revealed that the initial NE-SW shortening direction of the Himalayan orogeny is rotated to the N-S direction in the later stage. The resulting deformation style is expressed by the NW–SE and NE–SW striking lineaments and WNW–ESE striking thrust dipping moderately toward the north. Processed GPS data shows the rotation of the maximum principal compression direction and resultant readjustment of strains are linked with the revolving of the Indian Plate in the anticlockwise direction which is responsible for the orientation of different discontinuities, developing maximum shear stress conditions, weak internal friction and negligible resistance by low-strength rock. The present tectonic setup of the Kedarnath region is highly susceptible to devastating floods and vulnerable landslides.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2024-06-01

How to Cite

Sahu, S. S., & Bhattacharjee, N. (2024). Spatial Vulnerability Investigation by Morphotectonic Analysis of the Mandakini River Basin near Kedarnath, Uttarakhand, India using SRTM DEM in a GIS Platform and GPS Data. Journal of Geological Society of India, 100(6), 827–840. https://doi.org/10.17491/jgsi/2024/173913

References

Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., R.A. Pielke, J. R., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D. and Wallace, J.M. (2003) Abrupt climate change. Science, v.299, pp.2005-2010.

Beaumont C., Fulsack P. and Hamilton, J. (1991) Erosional control of active compressional orogens. In: K.R. McClay (Ed.), Thrust Tectonics, Chapman and Hall, New York, pp.1-18.

Bhattacharjee, N. and Mohanty, S.P. (2020) GIS-based approach for the measurement of variability in tectonomorphic signatures using DEM’s data: a case study from the Habo Dome in the Kachchh area, India. Environ. Earth Sci., v.79(18), pp.1-26. https://doi.org/10.1007/s12665-020-09146-5

Bilham, R., Bodin, P. and Jackson, M. (1995) Entertaining a great earthquake in western Nepal: historic inactivity and geodetic tests for the present state of strain. Jour. Nepal Geol. Soc., v.11(1), pp.73-78.

Bilham, R., Larson, K. and Freymueller, J. (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature, v.386(6620), pp.61-64. https://doi.org/10.1038/386061a0

Billings, M.P.(1954) Structural Geology. Prentice-Hall, New York, N.Y., 2nd ed., 514p.

Bisht, H., Kotlia, B.S., Kumar, K., Dumka, R.K., Taloor, A.K. and Upadhyay, R. (2021) GPS derived crustal velocity, tectonic deformation and strain in the Indian Himalayan arc. Quaternary Internat., v.575, pp.141-152.

Bull, W.B. (1978) Geomorphic tectonic activity classes of the south front of the San Gabriel Mountains, California. Geosciences Department, University of Arizona, Tucson, Arizona.

Bull, W.B. and McFadden, L.D. (1977) Tectonic geomorphology north and south of the Garlock Fault, California. In: Doehring, D.O. (Ed.), Geomorphology in arid regions. Proc. 8th Annual Geomorphology Symposium. State University of New York, Binghampton, pp.115-138.

Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Ried, M.R. and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, v.379, pp.505-510.

Catlos, E.J., Dubey, C.S., Marston, R.A. and Harrison, T.M. (2007) Geochronologic constraints across the Main Central Thrust shear zone, Bhagirathi River (NW India): implications for Himalayan tectonics. Spec. Papers, Geol. Soc. Amer., v.419, p.135.

Centamore, E., Ciccacci, S., Del Monte, M., Fredi, P. and Palmieri, E.L. (1996) Morphological and morphometric approach to the study of the structural arrangement of north-eastern Abruzzo (central Italy). Geomorph., v.16(2), pp.127-137. https://doi.org/10.1016/0169-555X(95)00138-U

Copeland, P., Harrison, T.M., Hodges, K.V., Maruéjol, P., Le Fort, P. and Pecher, A. (1991) An early Pliocene thermal disturbance of the Main Central Thrust, central Nepal: Implications for Himalayan tectonics. Jour. Geophys. Res.: Solid Earth,v. 96(B5), pp.8475-8500. https://doi.org/10.1029/91JB00178

Cotton, F., Campillo, M., Deschamps, A. and Rastogi, B.K. (1996) Rupture history and seismotectonics of the 1991 Uttarkashi, Himalaya earthquake. Tectono., v.258(1-4), pp.35-51. https://doi.org/10.1016/0040-1951(95)00154-9

Cox, R.T., 1994. Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol. Soc. Amer. Bull., v.106(5), pp.571-581, DOI: 10.1130/0016-7606(1994)106<0571:AODBSA>2.3.CO;2.

Dasgupta, S., Pande, P., Ganguly, D., Iqbal, Z., Sanyal, K., Venkataraman, N.V., Sural, B., Harendranath, L., Mazumdar, K., Sanyal, S. and Roy, A. (2000) Seismotectonic Atlas of India and its environments. Calcutta: Spec. Publ. Geol. Surv. India, 86p.

Dumka, R.K., Kotlia, B.S., Kothyari, G.C., Paikrey, J. and Dimri, S. (2018) Detection of high and moderate crustal strain zones in Uttarakhand Himalaya, India. Acta Geodaetica et Geophysica, v.53, pp.503-521.

El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. and Keller, E.A. (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorph., v.96(1), pp.150-173. https://doi.org/10.1016/j.geomorph.2007.08.004

Friend, P.F. and Sinha, R. (1993) Braiding and meandering parameters. Geol. Soc., London, Spe. Publ., v.75(1), pp.105-111. https://doi.org/10.1144/GSL.SP.1993.075.01.05

Froude, M.J. and Petley, D.N. (2018) Global fatal landslide occurrence from 2004 to 2016. Nat. Haz., Earth Sys. Sci., v.18(8), pp.2161-2181. https://doi.org/10.5194/nhess-18-2161-2018

G.S.I (2012) Geology and mineral resources of the states of India.Miscellaneous Publication, 30(XIII): Uttar Pradesh and Uttarakhand.

Gansser, A. (1964) Geology of the Himalayas.

Groppo, C., Rubatto, D., Rolfo, F. and Lombardo, B. (2010) Early oligocene partial melting in the main central thrust zone (Arun valley, eastern Nepal Himalaya). Lithos, v.118(3-4), pp.287-301. https://doi.org/10.1016/j.lithos.2010.05.003

Gupta, H.K. (2020) Repeat of 1905 Kangra, India earthquake: A case study. In: AGU Fall Meeting Abstracts, 2020, NH003-0001.

Gupta, V., Paul, A., Kumar, S. and Dash, B. (2021) Spatial distribution of landslides vis-à-vis epicentral distribution of earthquakes in the vicinity of the Main Central Thrust zone, Uttarakhand Himalaya. Curr. Sci., v.120 (12), pp.1927-1932. https://doi.org/10.18520/cs/v120/i12/1927-1932

Hack, J.T. (1973) Stream-profile analysis and stream-gradient index. Jour. Res. USGS, v.1(4), pp.421-429.

Hare, P. W. and Gardner, T.W. (1985) Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa, M., Hack, J.T. (Eds.), Tect. Geomorph. Allen and Unwin, Boston, pp.75-104.

Harrison, T.M., Ryerson, F.J., Le Fort, P., Yin, A., Lovera, O.M. and Catlos, E.J. (1997) A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. EarthPlanet. Sci. Lett., v.146(1-2), pp.E1-E7. https://doi.org/10.1016/S0012-821X(96)00215-4

Hintersberger, E., Thiede, R.C. and Strecker, M.R. (2011) The role of extension during brittle deformation within the NW Indian Himalaya. Tectonics, v.30(3).

Hodges, K.V., Wobus, C., Ruhl, K., Schildgen, T. and Whipple, K. (2004) Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett., v.220(3-4), pp.379-389. https://doi.org/10.1016/S0012-821X(04)00063-9

Horton, R.E. (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Amer. Bull., v.56, pp.275-370. https://doi.org/10.1130/0016-7606(1992)104<0851:TSFFTE>2.3.CO;2

Hubbard, M.S. and Harrison, T.M. (1989) 40Ar/39Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and Tibetan Slab, eastern Nepal Himalaya. Tectonics, v.8(4), pp.865-880. https://doi.org/10.1029/TC008i004p00865

Juyal, N., Sundriyal, Y. P., Rana, N., Chaudhary, S. and Singhvi, A. K. (2010) Late Quaternary fluvial aggradation and incision in the monsoon dominated Alaknanda valley, Central Himalaya, Uttarakhand, India. Journal of Quaternary Science, 25, (9999), 1-13.

Kayal, J.R., Ram, S., Singh, O.P., Chakraborty, P.K. and Karunakar, G. (2003) Aftershocks of the March 1999 Chamoli earthquake and seismotectonic structure of the Garhwal Himalaya. Bull. Seismol. Soc. Amer., v.93(1), pp.109-117. https://doi.org/10.1785/0119990139

Keller, E.A. and Pinter, N. (2002) Active Tectonics: earthquakes, uplift and landscape (Second Edition). Prentice Hall, New Jersey.

Khan P K, Ansari M A and Mohanty S. (2014) Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications. Jour. Earth Syst. Sci., v.123, pp.1013– 1030.

Khin, K., Moe, A. and Myint, M. (2020) Geology, structure and lithostratigraphic framework of the Rakhine Coastal Ranges in western Myanmar: Implications for the collision of the India Plate and West Myanmar Block. Jour. Asian Earth Sci., v.196, 104332.

Kothyari, G.C. and Luirei, K. (2016) Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya. Geomorphology. https://doi.org/10.1016/j.geomorph.2016.06.010.

Leopold, L.B. and Wolman, M.G. (1957) River channel patterns: braided, meandering, and straight. US Government Printing Office.

Mahabaleswar, B. (2006) "Book Review" of Geology and Evolution of Indian Plate (From Hadean to Holocene—4 Ga to 4 Ka) by Naqvi, S.M. Gond-wana Res., v.9(4), pp.549-550. https://doi.org/10.1016/j.gr.2006.03.005

Middlemiss, C.S. (1910) The Kangra earthquake of 4th April, 1905. Geol. Surv. India, pp.38.

Mohanty, S. (2011) Crustal stress and strain patterns in the Indian plate interior: implications for the deformation behaviour of a stable continent and its seismicity. Terra Nova, v.23, pp.407-415. https://doi.org/10.1111/j.1365-3121.2011.01027.x.

Montgomery, D.R. (2001) Slope distributions, threshold hillslopes, and steady-state topography. Amer. Jour. Sci., v.301, pp.432-454.

Morell, K.D., Sandiford, M., Rajendran, C.P., Rajendran, K., Alimanovic, A., Fink, D. and Sanwal, J. (2015) Geomorphology reveals active décollement geometry in the central Himalayan seismic gap. Lithosphere, v.7(3), pp.247-256.

Mueller, J.E. (1968) An introduction to the hydraulic and topographic sinuosity indexes. Ann. Ass. Ame. Geogra., v.58(2), pp.371-385.

Mukhopadhyay, B. (2011) Clusters of moderate size earthquakes along Main Central Thrust (MCT) in Himalaya. Internat. Jour. Geosci., v.2(03), p.318.

Ni, J. and Barazangi, M. (1984) Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya. Jour. Geophys. Res.: Solid Earth, v.89(B2), pp.1147-1163.

Pandit, K., Singh, M. and Sahoo, J.P. (2022) Seismic Stability Evaluation of an Indian Himalayan Slope: A Case Study. Earthqu.Geotec.,Springer, Singapore, pp.519-528. https://doi.org/10.1007/978-981-16-5669-9_42

Pérez-Peña, J.V., Azor, A., Azañón, J.M. and Keller, E.A. (2010) Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorph., v.119(1-2), pp.74-87. https://doi.org/10.1016/j.geomorph.2010.02.020

Piacentini, D., Troiani, F., Servizi, T., Nesci, O.and Veneri, F. (2020)SLiX: A GIS toolbox to support along-stream knick zones detection through the computation and mapping of the Stream Length-gradient (SL) index. Int. Jour. Geo-Inf., v.9(2), pp.69. https://doi.org/10.3390/ijgi9020069

Pike, R.J. and Wilson, S.E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol. Soc. Amer. Bull., v.82(4), pp.1079-1084. https://doi.org/10.1130/0016-7606(1971) 82[1079:ERHIAG]2.0.CO;2

Ponraj, M., Miura, S., Reddy, C.D., Amirtharaj, S. and Mahajan, S.H. (2011) Slip distribution beneath the Central and Western Himalaya inferred from GPS observations. Geophys. Jour. Internat., v.185(2), pp.724-736

Ray, Y. and Srivastava, P. (2010) Widespread aggradation in the mountainous catchment of the Alaknandae Ganga River System: timescales and implications to Hinterland foreland relationships. Quaternary Sci. Rev., v.29, pp.2238-2260.

Rawat, M.S., Uniyal, D.P., Dobhal, R., Joshi, V., Rawat, B.S., Bartwal, A., Singh, D. and Aswal, A. (2015) Study of landslide hazard zonation in Mandakini Valley, Rudraprayag district, Uttarakhand using remote sensing and GIS. Curr. Sci., pp.158-170.

Rajendran, K., Parameswaran, R.M. and Rajendran, C.P. (2018) Revisiting the 1991 Uttarkashi and the 1999 Chamoli, India, earthquakes: Implications of rupture mechanisms in the central Himalaya. Jour. Asia. Earth Sci., v.162, pp.107-120. https://doi.org/10.1016/j.jseaes.2018.04.012

Sarkar, I., Pachauri, A.K. and Israil, M.(2001) On the damage caused by the Chamoli earthquake of 29 March, 1999. Jour. Asia. Earth Sci.,v.19(1-2), pp.129-134. https://doi.org/10.1016/S1367-9120(00)00021-3

Schumm, S.A. (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Amer. Bull., v.67(5), pp.597-646. https://doi.org/10.1130/0016-7606(1956)67[1623:SSOTPO]2.0.CO;2

Searle, M.P., Law, R.D., Godin, L., Larson, K.P., Streule, M.J., Cottle, J.M. and Jessup, M.J. (2008) Defining the Himalayan main central thrust in Nepal. Jour. Geol. Soc., v.165(2), pp.523-534. https://doi.org/10.1144/0016-76492007-081

Seeber, L. and Armbruster, J.G., 1981. Great detachment earthquakes along the Himalayan arc and long term forecasting. Earthquake prediction: an international review, 4, pp.259-277.

Seeber, L. and Pêcher, A. (1998) Strain partitioning along the Himalayan arc and the Nanga Parbat antiform. Geology, v.26(9), pp.791-794. https://doi.org/10.1130/0091-7613(1998)026<0791:SPATHA>2.3.CO;2

Sharma, G. and Mohanty, S. (2018) Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorph., v.301, pp.108-120. https://doi.org/10.1016/j.geomorph.2017.11.002

Singh, S.P., Singh, V.K. and Saklani, P.S. (1997) Metamorphism in the central crystalline of higher Himalaya in Kedarnath valley, Garhwal Himalaya, UP. Himalayan Geol., v.18, pp.119-133.

Stephenson, B.J., Searle, M.P., Waters, D.J. and Rex, D.C. (2001). Structure of the Main Central Thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar–Zanskar Himalaya. Jour. Geol. Soc., v.158(4), pp.637-652. https://doi.org/10.1144/jgs.158.4.637

Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Amer. Bul., v.63(11),pp.1117-1142.doi: 10.1130/0016-7606(1952)63[167:CBATO]2.0.CO;2

Strahler, A.N. (1964) Quantitative geomorphology of drainage basins and channel networks. Hand. Appl. Hydro.: McGraw-Hill, New York, v.II, pp.4-39.

Sundriyal, Y.P., Shukla, A.D., Rana, N., Jayangondaperumal, R., Srivastava, P., Chamyal, L.S., Sati, S.P. and Juyal, N. (2015) Terrain response to the extreme rainfall event of June 2013: Evidence from the Alaknanda and Mandakini River Valleys, Garhwal Himalaya, India. Episodes, v.38(3), pp.179-188.

Treloar, P.J. and Coward, M.P. (1991) Indian Plate motion and shape: constraints on the geometry of the Himalayan orogen. Tectonophysics, v.191(3-4), pp.189-198.

Tripathi, S., Areendran, G., Gupta, N.C., Raj, K. and Sahana, M. (2021) Environmental and Livelihood Impact Assessment of 2013 Flash Flood in Alakananda and Mandakini River Valley, Uttarakhand (India), Using Environmental Evaluation System and Geospatial Techniques. Rem. Sens.GISci.,Springer, Cham., pp.11-34. https://doi.org/10.1007/978-3-030-55092-9_2

Valdiya, K.S. (1999) Tectonic and lithological characterization of Himadri (Great Himalaya) between Kali and Yamuna rivers, central Himalaya. Himalayan Geol., v.20(2), pp.1-17.

Valdiya, K.S. (1998) Dynamic Himalaya. Universities press.

Vittala, S.S., Govindaiah, S. and Gowda, H.H. (2004) Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district, South India using remote sensing and GIS techniques. Jour. Indian Soc. Rem. Sens., v.32(4), pp.351-362. https://doi.org/10.1007/BF03030860

Yeats, R.S. and Lillie, R.J. (1991) Contemporary tectonics of the Himalayan frontal fault system: folds, blind thrusts and the 1905 Kangra earthquake. Jour. Struc. Geol.,v.13(2), pp.215-225. https://doi.org/10.1016/0191-8141(91)90068-T

Yin, A., Dubey, C.S., Kelty, T.K., Gehrels, G.E., Chou, C.Y., Grove, M. and Lovera, O., (2006) Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Curr. Sci., pp.195-206.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.