Tectono-thermal Evolution of the Proterozoic Mahakoshal Belt along the Northern Margin of Central Indian Tectonic Zone: Constraints from Geochemistry, Phase Equilibria Modelling and in-situ Monazite Dating from a Metapelite Sequence around Jabalpur

Authors

  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee - 247 667
  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee - 247 667
  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee - 247 667
  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee - 247 667

DOI:

https://doi.org/10.17491/jgsi/2024/173944

Keywords:

No Keywords.

Abstract

In this contribution, geochemical signatures and petrological evolution of a folded sequence of mica schist from the Jabalpur area of the Mahakoshal Belt in the northern Central Indian Tectonic Zone (CITZ) are described. Multiple tectonic discrimination diagrams incorporating both major and trace element concentrations have constrained back-arc settings for deposition of the sedimentary units. S1 foliation formation marks the beginning of the M1 metamorphic stage. In contrast, the later M2 metamorphic event resulted in garnet and andalusite formation during heating at 2-3 kbar, followed by staurolite-sillimanite, garnet-staurolite assemblages at peak P-T conditions of 5.4 kbar, 550-600°C. Textural evidence suggests that M2 is pre-syn tectonic to D2 deformation, resulting in formation of the NE-SW trending S2 axial planar foliation. From the isopleth thermobarometry, a clockwise P-T path with near-isothermal decompression has been determined for M2. Similar results have been obtained from conventional thermo-barometry performed on multiple samples. Monazite dating (EPMA) of one of the samples suggests 1.9 Ga, age for D1-M1 event. M2 is correlated with the younger age population of monazites yielding 1.5 Ga. A clockwise P-T path constrained for M2 suggests collisional tectonics along the northern margin of the CITZ, as recorded from its southern margin.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2024-07-01

How to Cite

A.K., S., L., S., S., B., & S., G. (2024). Tectono-thermal Evolution of the Proterozoic Mahakoshal Belt along the Northern Margin of Central Indian Tectonic Zone: Constraints from Geochemistry, Phase Equilibria Modelling and in-situ Monazite Dating from a Metapelite Sequence around Jabalpur. Journal of Geological Society of India, 100(7), 1018–1032. https://doi.org/10.17491/jgsi/2024/173944

References

Acharyya, S.K. and Roy, A. (2000) Tectonothermal history of the central Indian tectonic zone and reactivation of major faults/shear zones. Jour Geol. Soc. India, v.55(3), pp.239-256.

Basu Sarbadhikari, A. and Bhowmik, S.K. (2008) Constraining the metamorphic evolution of a cryptic hot Mesoproterozoic orogen in the Central Indian Tectonic Zone, using P–T pseudosection modelling of mafic intrusions and host reworked granulites. Precambrian Res., v.162(1-2), pp.128-149. https://doi.org/10.1016/j.precamres.2007.07.014

Bhandari, A., Pant, N.C., domingk, SKK and Goswami, S. (2011) <“1.6 Ga ultrahigh temperature granulite metamorphism in the Central Indian Tectonic Zone: insights from metamorphic reaction history, geothermobarometry and monazite chemical ages. Geol. Jour., v. 46(23), pp.198-216. https://doi.org/10.1002/gj.1221

Bhatia, M.R. and Crook, K.A. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92(2), pp.181-193. https://doi.org/10.1007/BF00375292

Bhowmik, S.K. and Pal, T. (2000) Petrotectonic implication of the granulite suite north of the Sausar mobile belt in the overall tectonothermal evolution of the Central Indian mobile belt. Unpubl. Prog. Report. Geol. Surv. India, v.82.

Bhowmik, S.K. and Roy, A. (2003) Garnetiferous metabasites from the Sausar Mobile Belt: petrology, P–T path and implications for the tectonothermal evolution of the Central Indian Tectonic Zone. Jour. Petrol., v.44(3), pp.387-420. https://doi.org/10.1093/petrology/44.3.387

Bhowmik, S.K. and Spiering, B. (2004) Constraining the prograde and retrograde P-T paths of granulites using decomposition of initially zoned garnets: an example from the Central Indian Tectonic Zone. Contrib. Mineral., Petrol., v. 147, pp. 581-603. https://doi.org/10.1007/s00410-004-0573-3

Bhowmik, S.K., Pal, T., Roy, A. and Pant, N.C. (1999) Evidence for Pre-Grenvillian high-pressure granulite metamorphism from the northern margin of the Sausar mobile belt in Central India. Jour. Geol. Soc. India, v.53(4), pp.385-399.

Bhowmik, S.K., Sarbadhikari, A.B., Spiering, B. and Raith, M.M. (2005) Mesoproterozoic reworking of palaeoproterozoic ultrahigh-temperature granulites in the Central Indian Tectonic Zone and its implications. Jour. Petrol., v.46, pp.1085–1119. https://doi.org/10.1093/petrology/egi011

Bhowmik, S.K., Wilde, S.A., Bhandari, A., Pal, T. and Pant, N.C. (2012) Growth of the Greater Indian Landmass and its assembly in Rodinia: geochronological evidence from the Central Indian Tectonic Zone. Gondwana Res., v.22(1), pp.54-72. https://doi.org/10.1016/j.gr.2011.09.008

Bhowmik, S. K., Wilde, S. A., Bhandari, A. and Sarbadhikari A.B. (2014) Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: an Example from the Central Indian Tectonic Zone. Jour. Petrol., v.55(3), pp.585–621. https://doi.org/10.1093/petrology/egt078

Boynton, W.V. (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Developments in geochemistry, v.2, pp.63-114 Elsevier. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D. and Windley, B.F. (2009) Accretionary orogens through Earth history. Geol Soc, London, Spec. Publ., v.318(1), pp.1-36. https://doi.org/10.1144/SP318.1

Carson, C.J., Powell, R. and Clarke, G.L. (1999) Calculated mineral equilibria for eclogites in CaO–Na2O–FeO–MgO-Al2O3-SiO2-H2O: application to the Pouébo Terrane, Pam Peninsula, New Caledonia. Jour. Metamorp. Geol., v.17, pp.9-24. https://doi.org/10.1046/j.1525-1314.1999.00177.x

Chattopadhyay, A., Chatterjee, A., Das, K. and Sarkar, A. (2017) Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, central India: Tectonic significance of U-Pb zircon and U-Th-total Pb monazite ages. Jour. Asian Earth Sci., v.147, pp.485-501. https://doi.org/10.1016/j.jseaes.2017.08.018

Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., v.104(1-4), pp.1-37. https://doi.org/10.1016/00092541(93)90140-E

Connolly, J.A.D. (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modelling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett., v.236(1/2), pp. 524–541. https://doi.org/10.1016/j.epsl.2005.04.033

Cullers, R.L. (1994) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim. Cosmochim. Acta, v.58(22), pp.4955-4972. https://doi.org/10.1016/0016-7037(94)90224-0

Deshmukh, T., Prabhakar, N., Bhattacharya, A. and Madhavan, K. (2017) Late Paleoproterozoic clockwise P–T history in the Mahakoshal Belt, Central Indian Tectonic zone: implications for Columbia supercontinent assembly. Precambrian Res., v.298, pp.56-78. https://doi.org/10.1016/j.precamres.2017.05.020

Dora, M.L., Meshram, T., Baswani, S.R., Malviya, V.P., Upadhyay, D., Shareef, M., Raza, M.A., Ranjan, S., Meshram, R., Patnaik, M.K. and Randive, K. (2023) Geological evolution of the Proterozoic Betul Belt (2.16-0.95 Ga) of the Central Indian Tectonic Zone: Its linkage to assembly and dispersal of Columbia and Rodinia supercontinrnts. Gondwana Res., v.116, pp.168-197. https://doi.org/10.1016/j.gr.2022.11.017

Eriksson, P.G., Mazumdar, R., Sarkar, S., Bose, P.K., Altermann, W. and Marwe, R. van der (1999) The 2.7-2.0 Ga volcano-sedimentary record of Africa, India and Australia: evidence for global and local changes in sea level and continental freeboard. Precambrian Res., v.97, pp.269-302.

Fedo, C.M., Wayne Nesbitt, H. and Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geol., v.23(10), pp.921-924. https://doi.org/10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2

Fuhrman, M.L. and Lindsley, D.H. (1988) Ternary-feldspar modeling and thermometry. Amer. Mineral., v.73(3-4), pp.201-215.

Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X. and Qi, L. (2002) Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. Jour. Sediment. Res., v.72(3), pp.393-407. https://doi.org/10.1306/081601720393

Guiraud, M., Powell, R. and Rebay, G. (2001) H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. Jour. Metamorp. Geol., v.19(4), pp.445-454. https://doi.org/ 10.1046/j.0263-4929.2001.00320.x

Henry, D.J., Guidotti, V.C. and Thomson, A.J. (2005) The Ti-saturation surface for low to medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Amer. Mineral., v.90(2-3), pp.316-328. https://doi.org/10.2138/am.2005.1498

Herron, M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sediment. Res., v.58(5), pp.820-829.https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

Holdaway, M.J. (2000) Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. Amer. Mineral., v.85, pp.881–892. https://doi.org/10.2138/am-2000-0701

Holland, T.J.B. and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Jour. Meta. Geol., v.29(3), pp.333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

Indares, A., White, R.W. and Powell, R. (2008) Phase equilibria modelling of kyanite-bearing anatectic paragneisses from the central Grenville Province. Jour. Metamorp. Geol., v.26, pp.815– 836. https://doi.org/10.1111/j.1525-1314.2008.00788.x

Jain, S.C., Yedekar, D.B. and Nair, K.K.K. (1991) Central Indian Shear Zone: a major pre-Cambrian crustal boundary. Jour. Geol. Soc. India, v.37(6), pp.521-531.

Khanna, T.C., Rao, D.S., Bizimis, M., Satyanarayanan, M., Krishna, A.K. and Sai, V.S. (2017) ≤2.1 Ga intraoceanic magmatism in the Central India Tectonic Zone: Constraints from the petrogenesis of Ferropicrites in the Mahakoshal Supracrustal belt. Precambrian Res., v.302, pp.1-17. https://doi.org/10.1016/j.precamres.2017.09.012

Kretz, R. (1983) Symbols for rock-forming minerals. Amer. Mineral., v.68(1/2), pp.277–279.

Krishna, K., Kurakalva, R.M. and Murthy, N. (2009) Determination of Heavy Metals in Soil, Sediment, and Rock by Inductively Coupled Plasma Optical Emission Spectrometry: Microwave-Assisted Acid Digestion Versus Open Acid Digestion Technique. Atomic Spectroscopy., v.30(3), pp.75-81.

Kumar, M., Prakash, D., Singh, C.K., Yadav, M.K., Tewari, S., Singh, D.K., Mahanta, B. (2022) Geochronology and oxygen fugacity of the pelitic granulite from the Diwani hills, NE Gujarat (NW India). Geol Mag., v.160, pp.22-34. https://doi.org/10.1017/ S0016756822000607.

Lan, Z., Pandey, S.K., Zhang, S., Sharma, M., Gao, Y. and Wu, S. (2021) Precambrian crustal evolution in Northern Indian Block: evidence from detrital zircon U-Pb ages and Hf-isotopes. Precambrian Res., v.361, p.106238. https://doi.org/10.1016/j.precamres.2021.106238

Ludwig, K.R. (2012). Using Isoplot/Ex, version 3.75: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ. No.5, pp.1-71.

McLennan, S.C. (1995) Sediments and soils: Chemistry andabundances. Rock Physics and Phase Relations, A Hand-book of Physical Constants, AGU Reference Shelf 3. Amer. Geophys. Union, pp.8-19.

McLennan, S.M. and Taylor, S.R. (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Jour. Geol., v.99(1), pp.1-21. https://doi.org/10.1086/629470

McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: M.J.J. Johnsson, A. Basu (Eds.), Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Amer. Spec. Papers, v.284, pp.21-40. http://doi.org/10.1130/SPE284-p21

Mishra, D.C., Singh, B., Tiwari, V.M., Gupta, S.B. and Rao, MBSV (2000) Two cases of continental collisions and related tectonics during the Proterozoic period in India—insights from gravity modelling constrained by seismic and magnetotelluric studies. Precambrian Res., v.99(3-4), pp.149-169. https://doi.org/10.1016/S0301-9268(99)00037-6

Mohanty, S.P. (2021) The Bastar Craton of Central India: Tectonostratigraphic evolution and implications in global correlations. Earth-Sci. Rev., v.221, p. 103770. https://doi.org/10.1016/j.earscirev.2021.103770

Naganjaneyulu, K. and Santosh, M. (2010) The Central India Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Res., v.18(4), pp.547-564. https://doi.org/10.1016/j.gr.2010.02.017

Nair, K.K.K., Jain, S.C. and Yedekar, D.B. (1995) Stratigraphy, Structure and Geochemistry of the Mahakoshal Greenstone Belt. In: S. Sinha-Roy and K.R. Gupta (Eds.), Continental Crust of Northwestern and Central India. Mem. Geol. Soc. India, v.31, pp.403–432. https://cir.nii.ac.jp/crid/1573950400770426112

Nasipuri, P., Bhattacharya, A. and Das, S. (2008) Metamorphic reactions in dry and aluminous granulites: a Perple_X P–T pseudosection analysis of the influence of effective reaction volume. Contrib. Mineral. and Petrol., v.157, pp.301-311. https://doi.org/10.1007/s00410-008-0335-8

Nesbitt, H. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299(5885), pp.715-717. https://doi.org/10.1038/299715a0

Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, v.48(7), pp.1523-1534.

Palin, R.M., Weller, O.M., Waters, D.J. and Dyck, B. (2016) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci. Front., v.7(4), pp.591-607. https://doi.org/10.1016/j.gsf.2015.08.005

Powell, R., Holland, T.J.B.H. and Worley, B. (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Jour. Metamorp. Geol., v.16(4), pp.577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x

Prakash, D., Kumar, M., Rai, S.K., Singh, C.K., Singh, S., Yadav, R., Jaiswal, S., Srivastava V., Yadav, M.K., Bhattacharjee, S. and Singh, PK (2021) Metamorphic P–T evolution of Hercynite-quartz-bearing granulites from the Diwani hills, North East Gujarat (NW India). Precambrian Res., v.352, pp.1-19. https://doi.org/10.1016/j.precamres.2020.105997

Radhakrishna, B.P. and Ramakrishna, M. (1988) Archaean-Proterozoic boundary in India. Jour. Geol. Soc. India, v.32, pp.263–278.

Ramachandra, H.M. and Roy, A. (2001) Evolution of the Bhandara-Balaghat granulite belt along the southern margin of the Sausar mobile belt of central India. Jour. Earth Sys. Sci., v.110(4), pp.351-368. http://dx.doi.org/10.1007/BF02702900

Ramakrishnan, M. and Vaidyanadhan, R. (2010) Geology of India (vol. 1 & 2). Geological Society of India, Bangalore, v.2(1).

Robinson, P. (1991) The eye of the petrographer, the mind of the petrologist. Amer. Mineral., v.76(11-12), pp.1781-1810.

Roy, A. and Prasad, M.H. (2003) Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinian crustal assembly. Jour. Asian Earth Sci., v.22(2), pp.115-129. https://doi.org/10.1016/S1367-9120(02)00180-3

Roy, A., Kagami, H., Yoshida, M., Roy, A., Bandyopadhyay, BKK, Chattopadhyay, A., Khan, A.S., Huin, A.K. and Pal, T. (2006) Rb–Sr and Sm–Nd dating of different metamorphic events from the Sausar Mobile Belt, central India: implications for Proterozoic crustal evolution. Jour. Asian Earth Sci., v.26(1), pp.61-76. https://doi.org/10.1016/j.jseaes.2004.09.010

Roy, A., Prasad, M.H. and Devarajan, M.K.K. (2002) Low pressure meta-morphism, deformation and syntectonic granite emplacement in the Palaeo-proterozoic Mahakoshal supracrustal belt, Central India. Gondwana Res., v.5(2), pp.489-500.https://doi.org/10.1016/S1342-937X(05)70737-1

Roy, A. and Devarajan, M.K.K. (2000) A reappraisal of the stratigraphy and tectonics of the Proterozoic Mahakoshal belt, Central India. In: Precambrian crust of eastern and Central India. IGCP-368 Geol. Surv. India, Spl. Publ., v.55, pp. 79-97. https://cir.nii.ac.jp/crid/1572824500863877376

Saha, L., Pant, N.C., Pati, J.K., Upadhyay, D., Berndt, J., Bhattacharya, A. and Satynarayanan, M. (2011) Neoarchean high-pressure margarite–phengitic muscovite–chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite–chlorite schists from the Bundelkhand craton, north central India. Contrib. Mineral. Petrol., v.161(4), pp.511-530. https://doi.org/10.1007/s00410-010-0546-7

Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V., Vamsi Krishna, G., Dasaram, B., and Manikyamba, C. (2018) Rapid Determination of REEs, PGEs, and Other Trace Elements in Geological and Environmental Materials by High Resolution Inductively Coupled Plasma Mass Spectrometry. Atomic Spectroscopy, v.39(1), pp. 1-15.

Schieber, J. (1992) A combined petrographical—geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana. Geol. Mag., v.129(2), pp.223-237. https://doi.org/10.1017/S0016756800008293

Singh, C.K. (2014) Active deformations extracted from drainage geomorphology: A case study from southern Sonbhadra District, Central India. Jour. Geol. Soc. India,, v.84, pp.569-578.

Singh, C.K., Srivastava, V. (2011) Morphotectonics of the area around Renukoot, District Sonbhadra, U.P. using remote sensing and GIS techniques. Jour. Indian Soc. Rem. Sens., v.39(2), pp.235-240. https://doi.org/10.1007/s12524-011-0072-8

Spear, F.S., Pyle, J.M. (2002) Apatite, monazite, and xenotime in metamorphic rocks. https://doi.org/10.2138/rmg.2002.48.7

Suzuki, K. and Adachi, M. (1991) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem. Jour., v.25(5), pp.357-376. https://doi.org/10.2343/geochemj.25.357

Suzuki, K. and Kato, T. (2008) CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Res., v.14(4), pp.569-586. https://doi.org/10.1016/j.gr.2008.01.005

Verma, S.P. and Armstrong-Altrin, J.S. (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem. Geol., v.355, pp.117-133. https://doi.org/10.1016/j.chemgeo.2013.07.014

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E. and Green, E.C.R. (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Jour. Metamorph. Geol., v.32, pp.261–286. https://doi.org/10.1111/jmg.12071

Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A. and Badarch, G. (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. Jour. Geol. Soc., v.164(1), pp.31-47. https://doi.org/10.1144/0016-76492006-022

Wronkiewicz, D.J. and Condie, K.C. (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim. Cosmochim. Acta, v.51(9), pp.2401-2416. https://doi.org/10.1016/0016-7037(87)90293-6

Xu, B., Charvet, J., Chen, Y., Zhao, P. and Shi, G. (2013) Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res., v.23(4), pp.1342-1364. https://doi.org/0.1016/j.gr.2012.05.015

Yadav, B.S., Ahmad, T., Kaulina, T., Bayanova, T. and Bhutani, R. (2020) Origin of post-collisional A-type granites in the Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone, India: Zircon U-Pb ages and geochemical evidences. Jour. Asian Earth Sci., v.191, p.104247. https://doi.org/10.1016/j.jseaes.2020.104247

Yedekar, D.B., Jain, S.C., Nair, K.K.K. & Dutta, K.K. (1990) The Central Indian collision suture. Geol. Surv. India Spec. Publ., v.28, pp.1-43.

Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci. Rev., v.59, pp.125–162.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.