Characterization of Panandhro Lignite Deposits (Kachchh Basin), western India: Results from the Bulk Geochemical and Palynofloral Compositions

Authors

  • Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow – 226 007
  • Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow – 226 007
  • Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow – 226 007
  • Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow – 226 007
  • Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow – 226 007

DOI:

https://doi.org/10.1007/s12594-018-0851-8

Abstract

Characterization of the Panandhro lignite deposits from western Indian state of Gujarat, based on the geochemical and palynological evidences, has been performed to assess the floral composition, maturity and hydrocarbon potential of the sequence. Elementally, the lignites consist of moderate carbon, low hydrogen and moderate sulfur contents. The samples are characterized by high TOC contents (lignite: av. 46.43 wt.%, resin: 62.47 wt.%). The average HI values for the lignite is 136 mg HC/g TOC, and that of the associated resin is 671 mg HC/g TOC. The highest Tmax is recoded in lignite (422°C) and lowest in the resin (39°C) samples. The FTIR spectrum of lignite is characterized by highly intense OH stretching peak ~3350 cm-1, aliphatic CHx stretching peaks between 3000-2800 cm-1, aromatic C=O stretching and an aromatic C=C stretching. The spectrum of resin shows strongest absorption due to aliphatic CHx stretching between 2940-2915 cm-1 and 2870-2850 cm-1, and deformation by the medium peak between 1450 and 1650 cm-1. The recovered palynofloral assemblage indicates the dominance of angiosperm pollen grains with maximum abundance of Arecaceae family, and subdominant pteridophytic spores. Marine influence is indicated by the presence of abundant dinoflagellate cysts. The occurrence of flora from a variety of ecological niches suggests a luxuriant diverse vegetation pattern existed in the vicinity of depositional site under humid tropical conditions. The overall characteristics of the lignite deposits point towards their ability to generate (upon maturation) hydrocarbons as they have types III-II admixed kerogen (organic matters).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2018-03-01

How to Cite

Mathews, R. P., Singh, B. D., Singh, H., Singh, V. P., & Singh, A. (2018). Characterization of Panandhro Lignite Deposits (Kachchh Basin), western India: Results from the Bulk Geochemical and Palynofloral Compositions. Journal of Geological Society of India, 91(3), 281–289. https://doi.org/10.1007/s12594-018-0851-8

References

Baskin, D.K. (1997) Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion. AAPG Bull., v.81, pp.1437-1450.

Biswas, S.K. (1992) Tertiary stratigraphy of Kutch. Jour. Palaeontol. Soc. India, v.37, pp.1-29.

Biswas, S.K. and Deshpande, S.V. (1970) Geological and tectonic maps of Kutch. In: Bull. Oil and Natural Gas Comm., v.7, pp.115-116.

Casagrande, D.J., Siefert, K., Berschinski, C. and Sutton, N. (1977) Sulfur in peat-forming systems of the Okefenokee Swamp and Florida Everglades: Origins of sulfur in coal. Geochim. Cosmochim. Acta, v.41, pp.161-167.

Chen, Y., Furmann, A., Mastalerz, M. and Schimmelmann, A. (2014) Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel, v.116, pp.538-549.

Chen, Y., Mastalerz, M. and Schimmelmann, A. (2012) Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Internat. Jour. Coal Geol., v.104, pp.22-33.

Dembicki, H. JR. (2009) Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull., v.93, pp.341356.

Dutta, S., Mallick, M., Bertram, N., Greenwood, P.F. and Mathews, R.P. (2009) Terpenoid composition and class of Tertiary resins from India. Internat. Jour. Coal Geol., v.80, pp.44-50.

Dutta, S., Mathews, R.P., Singh, B.D., Tripathi, S.K.M., Singh, A., Saraswati, P.K., Banerjee, S. and Mann, U. (2011) Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential. Internat. Jour. Coal Geol., v.85, pp.91-102.

Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., leplat, P. and Paulet, P. (1977) Méthodé rapide de charectérisation des roches méres, de leur potential pétrolier et de leur degré d évolution. Inst. Fr. Pet. Rev., v.32, pp.23-43.

Ferraro, J.R. and Basile, L.J. (1985) Fourier transform infrared spectroscopyApplications to chemical systems. Academic Press, v.4, pp.169-142.

Ganz, H. and Kalkreuth, W. (1987) Application of the infrared spectroscopy to the classification of kerogen-types and the evolution of source rock and oil shale potentials. Fuel, v.66, pp.708-711.

Georgakopoulos, A., Iordanidis, A. and Kapina, V. (2003) Study of low rank Greek coals using FTIR spectroscopy. Energy Sources, v.25, pp.995-1005.

Guo, Y. and Bustin, R.M. (1997) Micro-FTIR spectroscopy of liptinite macerals in coal. Internat. Jour. Coal Geol., v.36, pp.259-275.

Guo, Y., Renton, J.J. and Penn, J.H. (1996) FTIR microspectroscopy of particular liptinite-(lopinite) rich, late Permian coals from southern China. Int. Jour. Coal Geol., v.29, pp.187-197.

Hakimi, M.H., Abdullah, W.H., Sia, S.G. and Makeen, Y.M. (2013) Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential. Marine Petrol. Geol., v.48, pp.31-46.

Hunt, J.M. (1991) Generation of gas and oil from coal and other terrestrial organic matter. Org. Geochem., v.17, pp.673-680.

Hunt, J.M (1996) Petroleum geochemistry and geology. 2nd Ed., W.H. Freeman, San Fransisco, California, 707 pp.

Ibarra, J.V., Munoz, E. and Moliner, R. (1996) FTIR study of the evolution of coal structure during the coalification process. Org. Geochem., v.24, pp.725-735.

Iglesias, M.J., Jiménez, A., Laggoun-Défarge, F. and Suarez Ruiz, I. (1995) FTIR study of pure vitrains and associated coals. Energy and Fuels, v.9, pp.458-466.

Kar, R.K. (1985) The fossil floras of Kachchh. IV- Tertiary palynostratigraphy. The Palaeobotanist, v.34, pp.1-280.

Kumar, S., Singh, A. and Dogra, N.N. (2013) Huminite Reflectance Attributes for Rank Estimation of Panandhro Lignite Deposit (Kutch Basin), Gujarat, India. Gondwana Geol. Mag., v.28, pp.11-16.

Lafargue, E., Marquis, F. and Pillot, D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Oil & Gas Science and Technology, v.53, pp.421-437.

Langford, F.F. and Blanc-Valleron, M.M. (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull., v.74, pp.799-804.

Mandal, J. (1999) Fossil Rivulariaceae from the Early Eocene of Kutch, India. Jour. Palaeontol. Soc. India, v.44, pp.135-139.

Mastalerz, M. and Bustin, R.M. (1995) Application of reflectance micro-Fourier infrared spectroscopy in studying coal macerals: Comparison with other Fourier transform infrared techniques. Fuel, v.74, pp.536-542.

Mathews, R.P, Tripathi, S.K.M, Banerjee, S. and Dutta, S. (2013) Palynology, palaeoecology and palaeodepositional environment of Eocene lignites and associated sediments from Matanomadh mines, Kutch Basin, Western India. Jour. Geol. Soc. India, v.82, pp.236-248.

Mathews, R.P. and Singh, B.D. (2016) Characterization of solid bitumen from Panandhro lignite (western India) based on FTIR and Pyrolysis GC-MS study. Curr. Sci., v.111, pp.1842-1846.

Misra, B.K. (1992) Spectral fluorescence analysis of some lignite macerals from Panandhro lignite (Kutch), Gujarat, India. Int. Jour. Coal Geol., v.20, pp.145-163.

Misra, B.K. and Navale, G.K.B. (1992) Panandhro lignite from Kutch (Gujarat), India: Petrological nature, genesis, rank and sedimentation. The Palaeobotanist, v.39, pp.236-249.

Monga, P., Kumar, M., Prasad, V. and Joshi, Y. (2015) Palynostratigraphy, palynofacies and depositional environment of a lignite-bearing succession at Surkha Mine, Cambay Basin, north-western India. Acta Palaeobotanica, v.55, pp.183-207.

Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W. and Davis, A. (1981) Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Applied Spectroscopy, v.35, pp.475-485.

Painter, P.C., Starsinic, M. and Coleman, M.M. (1985) Determination of functional groups in coal by fourier transform interferometry. In: Ferraro, J.R. and Basile, L.J. (Eds.), Fourier Transform Infrared Spectrometry, Academic press, New York, v.4, pp.169-240.

Pareek, H.S. (1984) Petrological nomenclature and classification of Paleogene lignites of northwestern India. In: 9th C.R. Congr. Int. Stratigr. Geol. Carbonif., Washington D.C., v.4, pp.540-554.

Paul, S., Sharma, J., Singh, B.D., Saraswati, P.K. and Dutta, S. (2015) Early Eocene equatorial vegetation and depositional environment- biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. Internat. Jour. Coal Geol., v.149, pp.77-92.

Peters, K.E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, v.70, pp.318-329.

Peters, K.E. and Cassa M.R. (1994) Applied source rock geochemistry. In: Magoon, L.B., Dow, W.G. (Eds.), The Petroleum System from Source to Trap, AAPG Memoir, v.60, pp.93-120.

Petersen, H.I., Rosenburg, P. and Nytoft, H.P. (2008) Oxygen groups in coals and alginite-rich kerogen revisited. Int. Jour. Coal Geol., v.74, pp.93-113.

Raju, D.S.N and Mathur, N. (2013) Rajasthan lignite as a source of unconventional oil. Current Science, v. 104, pp.752-757.

Rochdi, A. and Landias, P. (1991) Transmission micro-infrared spectroscopy, an efficient tool for micro scale characterization of coal. Fuel, v.70, pp.364371.

Ryu, I. (2008) Source rock characterization and petroleum systems of Eocene Tyee basin, southern Oregon Coast Range, USA. Org. Geochem., v.39, pp.75-90.

Sahay, V.K. (2011) The hydrocarbon potential, thermal maturity, sequence stratigraphic setting and depositional palaeoenvironment of carbonaceous shale and lignite successions of Panandhro, northwestern Kutch Basin, Gujarat, western India. Cent. Eur. Jour. Geosci., v.3, pp.12-28.

Saraswati, P.K. and Banerjee, R.K. (1984) Lithostratigraphic classification of the tertiary sequence of northwestern Kutch. Proc. X Indian Collq. Micropaleontol. Stratigr, Pune, pp.369-376.

Sharma A., Saikia, B. K., Phukan, S.,. Baruah B. P. (2016) Petrographical and Thermo-chemical Investigation of some North East Indian High Sulphur Coals. Jour. Geol. Soc. India, v.88, pp.609-619.

Sharma, J. and Saraswati, P.K. (2015) Lignites of Kutch, Western India: Dinoflagellate biostratigraphy and palaeoclimate. Revue de Micropaleontol., v.58, pp.107-119.

Singh, A. (2002) Rank assessment of Panandhro lignite deposit, Kutch Basin, Gujarat. Jour. Geol. Soc. India, v.59, pp.69-77.

Singh, A. and Singh, B.D. (2005) Petrology of Panandhro lignite deposit, Gujarat in relation to palaeodepositional condition. Jour. Geol. Soc. India, v.66, pp.334-344.

Singh, B.D. and Singh, A. (2003) Petrographic evaluation of lignites from Panandhro field (Kachchh Basin), Gujarat. Minetech, v.24, pp.48-63.

Singh, H. (2015) Palynofloral investigation of the Akli Formation (Palaeocene) of Giral lignite mine, Barmer district, Rajasthan. Geophytology, v.45, pp. 209-214.

Singh, H., Prasad, M., Kumar, K. and Singh, S.K. (2015) Early Eocene macroflora and associated palynofossils from the Cambay Shale Formation, Western India: Phytogeographic and palaeoclimatic implications. Palaeoworld, v.24, pp.293-323.

Singh, H., Samant, S., Adatte, T. and Khozyem, H. (2014) Diverse palynoflora from amber and associated sediments of Tarkeshwar lignite mine, Surat district, Gujarat, India. Curr. Sci., v.106, pp.930-932.

Singh, P.K., Singh, V.K., Rajak, P.K., Singh, M.P., Naik, A.S., Raju S.V. and Mohanty D. (2016a) Eocene Lignites from Cambay Basin, Western India: An Excellent Source of Hydrocarbon. Geosciences Frontiers, v.7, pp.811819.

Singh, P.K., Rajak, P.K., Singh, M.P., Singh, V.K. and Naik, A.S. (2016b) Geochemistry of Kasnau-Matasukh lignites, Nagaur Basin, Rajasthan (India). Internat. Jour. Coal Sci. Tech., v.3, pp.104-122.

Singh, V.P., Singh, B.D., Singh, A., Singh, M.P., Mathews, R.P., Dutta, S., Mendhe, V.A., Mahesh, S. and Mishra, S. (2017) Depositional palaeoenvironment and economic potential of Khadsaliya lignite deposits (Saurashtra Basin), western India: Based on petrographic, palynofacies and geochemical characteristics. Internat. Jour. Coal Geol., v.171, pp.223-242.

Sobkowiak, M. and Painter, P.C. (1992) Determination of aliphatic and aromatic CH contents of coals by FT-IR: Studies of coal extracts. Fuel, v.71, pp.1105-1125.

Stankiewicz, B.A., Kruge, M.A. and Mastalerz, M. (1996) A geochemical study of macerals from Miocene lignite and an Eocene bituminous coal, Indonesia. Org. Geochem., v.24, pp.531-545.

Stojanovií¦, K., •ivotií¦, D., Å ajnovií¦, A., Cvetkovií¦, O., Nytoft, H.P. and Scheeder, G. (2012) Drmno lignite field (Kostolac Basin, Serbia): Origin and palaeoenvironmental implications from petrological and organic geochemical studies. Jour. Serbian Chem. Soc., v.77, pp.11091127.

Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G. and Hackley, P.C. (2012) Review and update of the applications of organic petrology: Part 1, Geological applications. Int. Jour. Coal Geol., v.22, pp.54-112.

Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. and Robert, P. (1998) Organic Petrology. Gebrüder Borntraeger, Berlin, 704p.

Traverse, A. (1988) Palaeopalynology. Unwin Hyman Ltd., London, 600 pp.

Tissot, P. and Welte, D. (1984) Petroleum formation and occurrence, 2nd ed., Springer Verlag, Berlin, 699p.

Tripathi, S.K.M., Mathur, S.C., Nama, S.L. and Srivastava, D. (2007) Palynological studies from Early Eocene sequence exposed near Matasukh, Nagaur District, western Rajasthan, India. In: Trivedi, P. C. (Ed.), Palaeobotany to Modern Botany. Pointer Publishers, Jaipur, India, pp.49-56.

Tripathi, S.K.M., Singh, U.K. and Sisodia, M.S. (2003) Palynological investigation and palaeoenvironmental interpretations on Akli Formation (Late Palaeocene), Barmer District, Rajasthan, India. The Palaeobotanist, v.52, pp.87-96.

Tripathi, S.K.M. and Srivastava, D. (2012) Palynology and palynofacies of the Early Palaeogene lignite bearing succession of Vastan, Cambay Basin, western India. Acta Palaeobotanica, v.52, pp.157-175.

Vassallo, A.M., Liu, Y.L., Pang, L.S.K. and Wilson, M.A. (1991) Infrared spectroscopy of coal maceral concentrates at elevated temperatures. Fuel, v.70, pp.635-639.

Wang, B., Fan, S., Xu, F., Jiag, S. and Fu, J. (1983) A preliminary organic geochemical study of the Fushan depression, A Tertiary basin of eastern China. Adv. in Org. Geochem., pp. 108-113.

Waples, D. (1985) Geochemistry in petroleum exploration. Springer, Netherlands, 157p.

Most read articles by the same author(s)

1 2 > >>